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The stability of the two-dimensional flow induced by the transverse oscillation of a 
cylinder in a viscous fluid is investigated in both the linear and weakly nonlinear 
regimes. The major assumption that is made to simplify the problem is that the 
oscillation frequency is large, in which case an unsteady boundary layer is set up on 
the cylinder. The basic flow induced by the motion of the cylinder depends on two 
spatial variables, and is periodic in time. The stability analysis of this flow to axially 
periodic disturbances therefore leads to a partial differential system dependent on 
three variables. In the high-frequency limit the linear stability problem can be 
reduced to a system dependent only on a radial variable and time. Furthermore, the 
coefficients of the differential operators in this system are %periodic in time, so that 
Floquet theory can be used to reduce this system further to a coupled infinite system 
of ordinary differential equations together with uncoupled homogeneous boundary 
conditions. The eigenvalues of this system are found numerically and predict 
instability entirely consistent with the experiments with circular cylinders performed 
by Honji (1981). Results are given for cylinders of elliptic cross-section, and it is found 
that for any given eccentricity the most dangerous configuration is when the cylinder 
oscillates parallel to its minor axis. Some discussion of nonlinear effects is also given, 
and for the circular cylinder it is shown that the steady-streaming boundary layer 
of the basic flow is significantly altered by the instability. 

1. Introduction 
Our concern is with the stability of a class of flows that exhibit the phenomenon 

usually referred to as ‘steady streaming’. In  particular, motivated by the recent 
experiments of Honji (1981), we consider in detail the stability of the flow induced 
by the transverse oscillations of a circular cylinder of radius a in a viscous fluid of 
kinematic viscosity v. This flow has been investigated by several authors following 
the boundary-layer approach used by Schlichting (1932). For a detailed discussion 
of the steady streaming induced by the oscillation of the cylinder the reader is referred 
to the papers of Stuart (1966) and Riley (1967). 

The experiments of Honji illustrated clearly a phenomenon surprisingly not 
reported in previous experimental investigations of the flow. We refer to the 
observation made by Honji that the two-dimensional flow induced by the motion of 
the cylinder is unstable to axially periodic vortices of the Taylor-Gortler type a t  
sufficiently large values of the amplitude of oscillation of the cylinder. The instability 
occurs in the Stokes layers at the cylinder in the locations where they are parallel 
to the direction of motion of the cylinder. The instability is apparently of the 
centrifugal type, and is initially in the form of vortices aligned with the local flow 

12 F L M  146 



348 P. Hall 

direction. However, the steady streaming associated with the basic flow convects the 
dye used to visualize the vortices away from the Stokes layer. At larger amplitudes 
of oscillation the dye streaks produced by the vortices disappear, and the flow is 
said by Honji to be turbulent and separated. It was suggested by Honji that the 
instability might be of the type that is known to occur in a Stokes layer on a 
torsionally oscillating cylinder, and it is this possibility that we shall investigate in 
this paper. 

This latter type of instability has been investigated in detail by Seminara & Hall 
(1976, 1977), Park, Barenghi & Donnelly (1980) and Hall (1981). Suppose then that 
an infinitely long cylinder oscillates torsionally about its axis with angular velocity 
52 coswt in a viscous fluid. At sufficiently small values of w the flow is purely 
circumferential, whilst if w is slowly increased then a t  a critical value of w = wcl an 
array of vortices, periodic along the cylinders, develops in the boundary layer at the 
cylinder. The strength of the vortices increases as w is increased further, but a t  a 
second critical value of w ,  say wc2, the vortices interact with each other, and the flow 
rapidly becomes turbulent with no apparent periodicity along the cylinders. The 
theoretical description of this flow for w < wc2 given by Seminara & Hall (1976, 1977) 
was verified experimentally by Park et al. (1980). However, the secondary stage of 
the instability is perhaps only partially explained by the subharmonic instability 
mechanism described by Hall (1981). It is of interest to note that the values of wcl 
and wC2 are quite close, so that,  once the initial vortex structure has been set up, a 
relatively small increase in w leads to a turbulent flow. Thus, if this instability 
mechanism is indeed operating in the experiments of Honji, it  is clear that the 
two-dimensional flows of the type discussed by Schlichting (1932), Stuart (1966), etc. 
will be greatly altered. The primary aim of the present investigation is to determine 
the parameter range in which the two-dimensional solution is a stable solution of the 
Navier-Stokes equations, The feature of the basic flow that makes a stability 
calculation non-trivial is, of course, the fact that the basic flow depends upon time 
and two spatial coordinates. 

It is to be expected that at sufficiently large amplitudes of oscillation the boundary 
layer at the cylinder will separate and the attached-flow strategy of the type discussed 
by Schlichting and subsequent authors fails. The results of Honji suggest that this 
does not occur before the instability mechanism is operational. Thus our stability 
calculation provides an upper limit for the oscillation amplitude beyond which there 
is no reason to compute the basic flow. It is therefore possible that any laminar 
separation theory for the oscillating cylinder problem will not be relevant to 
experimental observations. 

Suppose then that a circular cylinder of radius a oscillates with velocity U, coswt 
along a diameter in a fluid of viscosity v .  The parameters that govern the two- 
dimensional flow are 

(1  .I a, b,  c) 

The frequency parameter /3 is taken to be large, so that the unsteady boundary layer 
on the cylinder is thin compared with its radius. The parameter h represents the ratio 
of the amplitude of oscillation of the cylinder to the cylinder radius and is taken to 
be small. Stuart (1966) has discussed the crucial role played by the steady-streaming 
Reynolds number R, in determining the nature of the steady streaming set up outside 
the Stokes layer on the cylinder. If R, is small the motion is determined by solving 
the Stokes equations, whereas for large R, an outer boundary-layer flow exists. 
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In  order to obtain some idea about the parameter regime in which an instability 
might occur we note that the first-order oscillatory flow set up by the motion of the 
cylinder is confined to a thin layer of thickness ( v / w ) :  a t  the cylinder, and so the radius 
of curvature of the paths of fluid particles is of order a. Thus the Taylor number that 
characterizes this boundary-layer flow is of order U ~ / a v h ~  = R,p-:. The instability 
mechanism described by Seminara & Hall (1976, 1977) operates when this Taylor 
number is O ( l ) ) ,  so we conclude that in the present problem the regime of interest 
is R, - @. For this reason we confine our attention in this paper to  the stability of 
the two-dimensional flow around the cylinder in the limit p+m, R, = O(@).  We 
further note that in this limit h is O( /I-$), so that the boundary layer on the cylinder 
is essentially a Stokes layer. 

The above comparison between the torsionally and transversely oscillating-cylinder 
flows ignores the spatial variation around the cylinder of the first-order boundary-layer 
flow in the latter case. An examination of this structure shows that the flow is locally 
most unstable a t  the positions 8 = k+x if the direction of oscillation is along the x-axis. 
We shall show that a self-consistent asymptotic description of the linear stability 
problem is possible for R, - @, /3+ 00. Furthermore, we show that the instability 
is confined to p-i neighbourhoods of the positions 8 = +in. More precisely we show 
that the flow is formally unstable when 

(1.2) R, > R,, = R,@+R,$+R,@+ ..., 

where R,, R,, etc. are O(1) constants to  be evaluated. I n  fact, we determine only 
R, and R,, and find that the resulting critical value of h agrees almost exactly with 
the experimental results of Honji. 

The analysis used for the circular-cylinder problem can be easily modified to more 
complicated steady-streaming flows. We shall show that, having investigated the 
linear stability problem for the circular cylinder we can, to first order in p, write down 
the critical stability parameter with only a knowledge of the first-order outer 
potential flow. However, a t  the next order there are technical differences between 
the circular-cylinder problem and for example the problem associated with elliptic 
cylinders. We shall see that these technical differences depend on whether or not the 
stagnation point of attachment of the steady streaming coincides with the most 
unstable part of the boundary layer. 

Some discussion of nonlinear effects for R, - R,, - O( f i )  is given. For the circular- 
cylinder problem a strong interaction between the steady streaming and the 
instability occurs. I n  fact it appears that  the higher modes of instability lead to the 
separation of the steady-streaming boundary layer within an angle O(p-4) of the 
point of attachment of the layer. 

The procedure adopted in the rest of this paper is as follows. I n  $2 the linear 
stability problem is formulated for p- co, R, - @, and an asymptotic solution of 
the problem is given. I n  $3 the results of the numerical solution of the eigenvalue 
problem obtained in $2 are given and compared to Honji’s experimental observation. 

I n  $4 we discuss the relevance of our calculations to more complicated flows. More 
precisely we consider the stability of the flow induced by the oscillation of an elliptic 
cylinder. We consider an ellipse with major and minor axis a and b with major axis 
inclined a t  angle a: to the x-axis, in which direction the cylinder is oscillating. We 
find that, depending on the values of a and bla ,  there are two or six locations where 
instability will occur. I n  $5  we consider the nonlinear development of the instability, 
whilst in $6  we draw some conclusions. 
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2. Formulation and solution of the linear stability problem in the limit 
P-tw 

The first step in our formulation is to note that by a simple change of axes we can 
take the cylinder to be held fixed whilst the fluid a t  infinity oscillates with speed 
U,coswt parallel to the x-axis. It is convenient for us to work in cylindrical polar 
coordinates ( r ,  8,z ‘ )  with the z’ axis along the axis of the cylinder. We now define the 
variables 7,  z and 7 by 

Following the scalings discussed in Q 1, we write 

(2.la,  6, c )  

where T is O($) and is, of course, the Taylor number. We shall investigate the 
stability of the boundary layer on the cylinder in which the basic velocity field is 
(u, V, 0 ) ,  with 

u = (2vw)i ( 2 . 3 ~ )  

(2.3b) 

where in particular 

while Go, GI, etc. can be found in, for example, Stuart (1966). 

such that the new velocity field is 

= cos 7 - cos (7 - 7) e-v, 

Following the scalings used by Seminara & Hall (1976), we perturb the basic flow 

u = (e, V, 0 )  + ((2vw).t u(r,e, z , 7 ) ,  uov(q, e , ~ ,  7 ) ,  ( 2 ~ 4 ;  w(7, e , z ,  t ) ) ,  (2.4) 

whilst the corresponding pressure perturbation is pwv P(q,8,  z, 7 ) .  If the above 
expression is substituted into the Navier-Stokes equations we find that U ,  V ,  W, and 
P satisfy 

(2.5a) 
ap 
a7 

L’U = --2Tsin8Vo V+Q,+O(p-$),  

L’ V = 2tT-ipP-f-+4 sin 8- U+ Q2 + O( p-:)), (2.5b) 
ap av, 
as a7 

(2.5c, d )  
ap au 2 3 B a v  aw 
az ar @ a o + S = O .  

L’W=-+Q,+O(/3-:), -+-- 

Here the nonlinear terms Q1, Q2 and Q3 are given by 

r az 

whilst the operator L’ has been defined by 
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We further note that the O(p-a) terms not shown explicitly in (2.5) comprise both 
linear and nonlinear terms. However, the linear terms not shown explicitly vanish 
when 0 = k i n ,  and for that  reason are negligible in the following analysis. The 
nonlinear terms not shown explicitly do not vanish at  0 = k i n ,  but the smallness 
of the disturbance which we assume in $5 means that, to the order considered in this 
paper, these terms are also negligible. 

For the remainder of this section we neglect the nonlinear terms in (2.5) and assume 
that P, U and V are proportional to  cos kz whilst W is proportional to sin kz. Here 
k is a constant axial wavenumber, and it is now convenient to eliminate W and P 
from the linearized form of (2 .5 )  to give 

2f sin e q,lra@ a u 
,,+O(P-i), ( 2 . 7 ~ )  P U = 2k2Tsin0vn V -  

which are to be solved subject to 

U,V+O as 7+m. 

The operator L appearing in (2 .7 )  is simply L’ with a2/az2 replaced by - kz .  
It can be seen from (2 .7 )  that  the 0-variation of the disturbance is slow compared 

with the T -  and 7-variations. The @dependence of U and V can therefore be taken 
care of by a WKB type of approach. However, since we are interested in the most 
unstable disturbances, it is convenient for us to  use a multiple-scale method. We can 
see from (2 .7 )  that, ignoring the term proportional to p-ta/ae, the ‘effective’ Taylor 
number of the flow is Tsin20, which has local maxima a t  0 = &in. Hence in the 
neighbourhood of say 0 = in the effective Taylor number is T{ 1 - (0 + . . .}. The 
symmetry of (2 .7 )  about 8 = ?p means that when the WKB formulation is used the 
point 0 = in is a turning point. Since the local Taylor number has a maximum a t  
0 = in the turning point is of the second order and the usual scaling analysis shows 
that a transition layer of thickness O(p-: )  exists near 0 = in. This situation is similar 
to that found by Hall (1982), who investigated the growth of small-wavelength 
Gortler vortices in boundary layers on concave walls. I n  that problem the most 
unstable modes have a vertical structure concentrated in an  internal transition layer, 
which again corresponds to a second-order turning point. 

The discussion above clearly also applies to the neighbourhood of 0 = -in, but let 
us concentrate on the transition layer a t  8 = in and write 

@ = (e-@)@. 
We seek a solution of (2 .7 )  by expanding U in the form 

u= U,(7,7 ,@)+P-:  U1(7,7,@)+P-:U2(7,7,@)+...  , 

T = T,+P- :T,+p-QT,+ ... . 

(2 .8 )  

together with a similar expansion for V .  The Taylor number T then expands as 

(2 .9)  

Here we have anticipated that the first-order correction to T from To is O(p- : )  rather 
than O(p- i )  as might be expected from ( 2 . 8 ) .  The above expansions are then 
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substituted into (2.7) and 8 replaced by $+P-kB. If terms O($) are equated we 
obtain 

and the appropriate boundary conditions are 

(2.11) 

The partial differential system (2.10), (2.1 1 )  governs the centrifugal instability of a 
Stokes layer on a cylinder driven by a pressure gradient rather than by the motion 
of the cylinder as was the case in Seminara & Hall (1976). The major difference is 
that  in the latter paper the function fi0 is replaced by cos(7-7)e-v. If we were 
concerned with the instability of flat Stokes layers driven by a pressure gradient or 
a moving wall we could show the equivalence of the corresponding instability 
problems by a simple change of axis. I n  the present situation there is no such 
transformation, and so the eigenvalues of (2.10) differ from those of Seminara & Hall 
(1976). I n  order to determine the value of To = T,(lc) above which exponentially 
growing solutions of (2.10) and (2.11) exist we seek periodic solutions of the latter 
system by writing 

m m 

lTO = A ( @ )  C Ut(q)ein7, V, = A ( @ )  C T'2(q)ein7. 
-m -a, 

The sequences of functions { Ut} and { V t }  therefore satisfy the ordinary differential 
system 

1 (2.12) 

The numerical solution of (2.12) will be discussed later, and it suffices to  say that the 
eigenrelation lc = &To) can be determined. The amplitude function A ( @ )  remains 
undetermined a t  this order. 

the partial differential equations satisfied by Ul and J: are found to 
be 

At order 

I 
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together with boundary conditions identical with (2 .11 ) .  The differential system for 
(U,, V,) is an inhomogeneous form of (2 .10)  and (2 .11 ) ,  and so we require that a 
solvability condition must be applied if the system is to have a solution. However, 
it can be inferred from (2 .12)  that the sequences of eigenfunctions ( U t }  and {V:} are 
such that either 

V t  = 0 (n odd), 

or ( b )  U t  = 0 ( n  odd), V: = 0 (n even). 

I n  fact, our calculation showed that the most unstable mode corresponds to ( b )  above. 
Hence if we expand (U,, V,) in the form 

(a)  U t  = 0 (n  even), 

m m 
U, = UT(@,y)eiaT, V, = C V3@,y)ein7, 

then from ( 2 . 1 3 ~ ~ )  it  follows that only the equations for U: and V:+', for n odd, are 
forced. Thus no solvability condition on ( 2 . 1 3 a )  is needed, and the solution of the 
system for (U,, V,) can be written 

-m -m 

dA - dA 00 (2 .13b)  
u - -u, + B ( @ )  U, = -5 einTU: + B ( @ )  einTu:, 

-m - d@ 

together with a similar expression for V,. Here B is another amplitude function to 
be determined a t  higher order. 

At order the function pair (U2,  V,) is found to satisfy 

k 2 - 2 2 } { & - k 2 }  a7 U2-2k2T,u0 V, 

whilst the boundary conditions are again identical with (2 .11) .  The forcing terms on 
the right-hand sides of the above equations are synchronous with the solutions of the 
homogeneous forms of the equations, and a solution for (U2 ,  V,) will not in general 
exist. However, by considering the partial differential system adjoint to  ( 2 . 1 0 )  and 
(2 .11 ) ,  we find that a solution exists if 

(2 .14 )  
d2A -+,u(T,-@~) A = 0, a w  

where ,U is given by 

k2 fo2' JOm U+G0 V, dy d7 
Y =  , (2 .15)  

dTt lo2' JOm [ vo V+ pl - voaa U+ 0, + vo U+ 

and (U+, V+) satisfy the adjoint differential system 

U+,V++0 as y-fco. 
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The eigenvalues of the adjoint system are of course identical with those of (2.10) and 
(2.11), and can be obtained by Fourier-expanding (U+, I") to obtain an infinite set 
of coupled ordinary differential equations. 

The constant p is a function of I % ,  and our computation suggests that it is positive 
near the critical value of To. This means that if we ignore the term proportional to 
O2 in (2.14) and assume that Aweim@ then the flow is neutrally stable when 

m2 

P 
T--. 1 -  

Thus non-axisymmetric modes are more stable than the axisymmetric mode m = 0. 
This result was found by Duck & Hall (1980) for the case when the flow is driven 
by the motion of the cylinder, whilst the present results show that this is also the 
case if a pressure gradient is driving the Stokes layer. The amplitude equation (2.14) 
has solutions that decay to zero when @++ 00 if p > 0. These solutions are 

A ( @ )  = A,(@)  = U,( -n-+, 2&@), (2.16) 

corresponding where U ,  is the nth parabolic-cylinder function and the value of 
to  A, is 

n + I  
= T = 2 2 .  In 

Pi 
(2.17) 

The function A,(@) has n- 1 zeros in ( -  00, a) and is even or odd in 4 depending 
on whether n is an even or odd integer. The functions all tend to zero like exp [ -+p i@2]  
when l@l+ co, and the least stable mode corresponds to n = 0, in which case 

A,(@) = exp [ - $ p W ] .  (2.18) 

The expansion procedure described above can be continued to any order, and we note 
here that the next non-zero term in the expansion of T is T,. 

3. The numerical solution of the linear eigenvalue problem 
The solution of eigenvalue problems such as (2.12) is now a routine procedure, and 

we shall give only the essential details of the calculations. The first step is to reduce 
(2.12) to a finite set of equations by setting U,  = V, = 0 for In1 > M .  We then replace 
co by qco, so that (2.12) has been approximated by a finite system of equations on 
a finite interval. Of course, it  is necessary to vary T~ and M to find appropriate values 
which enable us to solve (2.12) with sufficient accuracy. 

If q is sufficiently large then U: and V: satisfy 

There are three independent solutions of these equations which decay exponentially 
to zero when 9 + 00. Thus, if n is restricted to the range - M < n < M we can use 
these solutions to integrate the differential equations from T = qco to 7 = 0, thus 
obtaining 6M+ 3 independent solutions of the reduced system of equations. This 
integration was carried out using a fourth-order Runge-Kutta scheme with steplength 
h. These independent solutions of (2.12) can be combined a t  7 = 0 to satisfy 6M+2 
of the required boundary conditions there. The remaining boundary condition is 
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FIGURE 1.  The neutral curve of the linear problem. 

automatically satisfied if k = k(To) is an eigenvalue of the reduced system. This 
eigenvalue of the reduced system will depend on M ,  qa, and h, but by increasing M ,  
7m and decreasing h an eigenvalue of (2.12) can be obtained. 

In our calculations i t  was found that M = 6, ym = 10 and h = 0.25 gave results 
correct to the accuracy given in this section. In figure 1 we show the neutral curve 
k = k(T,), and the minimum of this curve corresponds to 

(3 . la ,  b )  

It is interesting to note that the corresponding value of T, for a torsionally oscillating 
cylinder is z 230, so that transverse oscillations of the cylinder produce a much more 
unstable flow. There is no obvious physical reason why this should be the case. 

The eigenfunctions corresponding to figure 1 were normalized by taking U:”(O) = 1 
and have the property that U t  = 0 and V?+l = 0 when n is an odd integer. The 
functions U: and V: corresponding to the critical case are shown in figure 2. We note 
that the disturbance is most pronounced near 7 z 3. It is interesting to note that 
an asymptotic solution of (2.12) in the limit a+ co with T - a4 shows that the vortices 
become concentrated in an internal viscous layer of thickness 6 5 .  In  this layer the 
functions U t  and V t  can all be expressed in terms of parabolic-cylinder functions. 
A similar calculation for the torsionally oscillating cylinder problem shows that 
when a+ 00, with T - a4, the vortices become concentrated in a layer of thickness 
a-i near 7 = 0,  and the eigenfunctions are then determined in terms of the Airy 
function Ai (x). 

I n  order to check the eigenvalues shown in figure 1 ,  the solution of the adjoint 
system was computed in a similar manner. The adjoint eigenfunctions were found 
to have the property (Up)+,  (V:+l)+ = 0 for n an odd integer. The inhomogeneous 
system for 0, and PI was found by a shooting procedure similar to that used for (2.12). 
The integrals appearing in the definition of ,u were then evaluated using Simpson’s 
rule. We obtained ,u = 0.033 with To and k as given by (3.1a, b ) .  The critical value 
of is therefore given by 

T,, = 5.51, 

= T,, = 11.99, k = k, = 0.51. 
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FIGURE 3. A comparison between Honji's experimental points and linear theory. 

so that the critical value of R, is 

R, = R,, = 4.24[p:+0.46/3:+ . . . I .  
If R, is greater than R,, the vortices grow exponentially in time but remain localized 
near 0 = in. In order to compare our result with those of Honji (1981) we rewrite 
(3.2) in the form 

We further note that, in the notation of Honji, h is equal to the ratio of the cylinder 
oscillation amplitude do to the diameter D = 2a and that the Strouhal number h't 
defined by Honji is related to  p by 

2 
St = - p .  

7c 



Boundary-layer stability on an oscillating cylinder 357 

I n  figure 3 we have compared our theoretical prediction of h = d,/D with Honji’s 
results. We recall that  above the lower of the two sequences of experimental points 
Honji observed Taylor-Gortler vortices. There seems little doubt that  the instability 
mechanism discussed here is responsible for the vortices seen by Honji. Surprisingly 
we see that (3.3) is in excellent agreement with Honji’s results even for h - 1 ,  even 
though (3.3) is formally valid only in the limit p+ co. 

4. Linear theory for more general steady streaming flows 
We shall in this section discuss the modifications to the expansion procedure of 

$3  that are necessary when the basic flow does not have the symmetry of the 
circular-cylinder problem. Suppose then that we consider the stability of the 
boundary layer induced by the outer potential flow U,, U(x) cos wt interacting with 
a rigid wall of local radius of (convex) curvature aR(z).  Here x is a dimensionless 
variable which measures distance along the wall. We again take 7 to be a normal 
variable scaled on the Stokes-layer length scale (2v /w); ,  and the basic flow in the 
boundary layer will be of the form (2.3) with sin$, cos0 and sin28 replaced by U ( x ) ,  
U ’ ( x )  and +U(x)  U(x)  respectively. 

which governs the 
stability of the boundary layer is given by 

At any local station x along the wall the local Taylor number 

2 2 4  U2(x) T -  
- avhd R(x) ’ 

and instability of the localized type discussed in $ 3  will occur a t  x = x,, which is a 
maximum of the function V ( x )  R-l(x) .  In  the neighbourhood of x ,  we write 

@ = (x-x,)p+i 

and expand the disturbance as in (2.8). The only essential differences are that the 
coefficients of the amplitude equation (2.14) are altered because ( 1 )  the radius of 
curvature must be expanded locally, and (2) the terms corresponding to  the p-4 terms 
in (2.3) remain O(p-:)  near x = x, and so contribute to the linear term in (2.14). 
However, the first-order term in the expansion of the Taylor number does not depend 
on these higher-order alterations, and so we can say that, correct to first order, the 
boundary layer is locally neutrally stable a t  x = x, if 

A(?)=,, dx R “(E)<o dx2 R a t  x = x ,  

and = 11.99 a t  x = x,. 

It is in fact more convenient to work with the overall non-local Taylor number 
defined by 

We then conclude that the boundary layer is unstable to centrifugally driven vortices 
when 

where Max ( U 2 / R )  denotes the largest maximum value of U 2 / R .  We see that, having 
performed the calculation of $3, the critical configuration defined by (4.1) can to first 
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order be written down with a knowledge of only the outer potential flow and the local 
radius of curvature. We illustrate the simplicity of the procedure by considering the 
stability of the flow induced by the oscillation of an elliptic cylinder in a viscous fluid. 

The basic flow induced by the high-frequency oscillation of an elliptical cylinder 
has been given by Davidson & Riley (1972). We suppose that the ellipse has major 
and minor axis of lengths 2a and 2b respectively and that the cylinder oscillates with 
velocity Uo cos wt in a direction making an angle - a with the x-axis. In  order to find 
the critical Taylor number for the flow, we require the first-order potential flow and 
the local radius of curvature of the ellipse. The potential flow is obtained in a routine 
manner by mapping the ellipse onto a circle of radius +(a + b ) .  If we use the parametric 
representation of the ellipse, 

x = acos9, y = bsinqi (0 < $ < 2 x ) ,  

then the slip velocity of the potential flow is 

The radius of curvature is easily obtained in terms of $, and we find that the local 
Taylor number q is given by 

and it follows that the flow is locally neutrally stable at $ = $, if 

d T  J = o ,  q =  11.99 a t  $=&. 
d 9  

We shall take a to be held fixed whilst K and the angle of attack a vary, and compare 
the critical Taylor number Ffor  the flow with that appropriate to a circular cylinder 
of radius a. 

a t  which the flow is locally neutrally stable a t  some value of 9, 
are found by considering the maxima of the function 

The values of 

S($)  = sin2($--) (sin2$+K2cos2$)-%. (4 .2)  

Unlike the circular-cylinder case there can be more than two values of $, a t  which 
this function has a maximum. I n  view of the symmetry of the problem we can restrict 
a to the range 0 < a < $T and $ to the range 0 < 9 < x. 

After some calculations it can be seen that the results for arbitrary values of a can 
be understood by first considering the case a = 0. In  this case the function S(q5) has 
a maximum a t  $ = = in for all values of K. However, when K < 2/% two further 
maxima occur a t  

and q5 = 9, = x-92. 
2K2 

3(1- K 2 )  
9 = $2 = sin-1 ( 

>; 

These two extra maxima emanate from q5 = when K = d! and 

fw,) = 44,) > S($J for K < di. 
Hence for K < 4% there are six potentially unstable points on the cylinder, and the 
most unstable points are $ = rj52, q53, 6, + x, 9, + x. The migration of the most unstable 
point away from 9 = tx is due to the relatively large increase in curvature away from 
4 = tx caused by increasing the eccentricity of the ellipse. We note that when a = 0 
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FIGURE 4. The dependence of p/E on K for a = 0, 0.2, 0.4, in. 
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FIQURE 5.  The dependence of 4, on K for a = 0, 0.2, 0.4,tn.  

and K = l / f  the scaling of $ 3  needs a more significant alteration since $ = $IT is then 
a fourth-order turning point. We must then choose to  work in a P-h neighbourhood 
of $a. The appropriate amplitude equation then has the term proportional to @ A  
in (2.3) replaced by @*A. 

In figure 4 we have shown the dependence of TIT, (where T, is the critical value 
for the case K = 1)  on K with a = 0. We obtain a familiar cusp-shaped curve, and 
we note that, for K > l / Q ,  is a single-valued function of K.  The lower curve for 
K < l / f  corresponds to the two equally unstable locations $2 and $3, and passes 
through the origin. This means that the critical value of TITo can be made arbitrarily 
small by taking the limit K+O. We can see in figure 5 that in this limit the locations 
of the most unstable positions approach + = O,a, where the radius of curvature is 
clearly greatest. 

The results for a + 0 are obtained by describing the unfolding of figures 4 and 5 
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when 0 < a 4 1. The upper and lower curves to the left) of the cusp move up and 
to the left when a increases from zero. The lower curve for a = 0 is in fact two 
coincident curves corresponding to $ = $2 and $ = $3. The other one of these curves 
remains connected to (T/q = 1 ,  K = 1 )  and ( T I T , ,  K = 0), but moves downwards 
until TIT, is eventually a monotonically increasing function of K on this branch. 
Ultimately the branch asymptotes to the curve = 4K5/(1 + K ) 2 ,  which corre- 
sponds to a = ;R, whilst the detached upper branches rapidly move to  the left and 
upwards when a increases. Finally, when a = in  there are only two maxima on the 
cylinder a t  $ = 0, R. I n  figures 4 and 5 we have illustrated this process for a few values 
of a. The curves I, I1 and 111 of these two figures correspond. 

Suppose now that we have an elliptical cylinder with K fixed and we require the 
most stable or unstable orientation of this ellipse in an oscillatory flow. It follows 
from figure 4 that if we wish to keep the flow stable then we choose a = 0, whilst 
if we wish to set up an unstable flow then we take a = iz. Next suppose that the 
angle of attack a is held fixed and K can be varied. We see from figure 4 that for 
some values of a there is range of values for K which give a flow more stable than 
that around a circular cylinder of radius a. The most pronounced effect of increasing 
eccentricity corresponds to the a = +R case. Here we see that, changing say K from 
1 to  + produces a decrease in the critical Taylor number by a factor of zz 20. 

5. The nonlinear development of the instability for the circular-cylinder 
problem 

We shall now describe how nonlinear effects alter the linear development of the 
instability described in 5 2. I n  the following discussion we use the terms 'fundamental ', 
'mean', 'first-harmonic' with reference to the z dependence of the disturbance. We 
recall that  A ,  the @-dependent amplitude of the disturbance, satisfies (2.14) and that 
exponentially decaying solutions of (2.14) exist only for certain values of TI, namely 
those given by (2.17). We shall choose a scaling for the amplitude of the disturbance 
in such a way that nonlinear effects modify (2.17). Smaller disturbances can then be 
considered by a further limiting procedure, whilst larger disturbances are probably 
not accessible to a weakly nonlinear stability theory. I f  we wish to obtain the linear 
structure of (2.14), we must expand 

T =  T,,+P- !T+ ..., (5.1) 
where T,, is the critical value of T,. 

It remains for us to specify the appropriate scale for the disturbance. This is a 
routine procedure and can be done by first assuming that the azimuthal disturbance 
velocity field is O(p-').  The interaction of the fundamental with itself produces 
through the nonlinear terms of the Navier-Stokes equations first-harmonic and 
mean-azimuthal-velocity fields O( p2'). The first-harmonic and mean-velocity fields 
then interact with the fundamental to reinforce the latter a t  O(p3')), so that,  in view 
of (5.1), we must choose 8 = t in order that  (2.14) should be modified by nonlinear 
effects. 

I n  principle the expansion procedure outlined above is straightforward ; however, 
the time dependence of the fundamental, mean, etc. leads to some technical 
difficulties which do not arise for steady flows. The major surprise of the nonlinear 
calculation is the effect of the instability on the mean flow. We recall that the mean 
flow has a small steady component with a double boundary-layer structure. We shall 
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see that the instability also drives a steady mean flow which turns out to be 
comparable to  that driven by the first-order oscillatory flow. This result is a t  first 
surprising, since it implies that  the instability calculated by weakly nonlinear 
stability theory modifies a t  first order the basic flow which has produced it. This is 
not the case, since the instability is driven by the oscillatory part of the basic flow 
and not by the steady-streaming component. However, the outer steady-streaming 
boundary layer is now driven simultaneously by the basic oscillatory flow and the 
instability, so that the instability does indeed have an O(1) effect on the steady 
streaming. 

We now outline the details of the expansion procedure described above. The 
disturbance quantities U ,  V ,  W and P then expand as 

U = P-iU, cos k, z + /Ti[ U, cos k,  z + U ,  cos 2k, z] 

+p-e[ U, cos k , z+  u, cos 2k,z + u, cos 3k,  z+ UMo] + . . . , ( 5 . 2 ~ )  

V = p-i V, cos k, z + p-:[ V, cos k,  2 + V, cos Zk, z + V M O ]  

+ /3 - t [&coskcz+  ~ c o s 2 k C z +  I.;cos3k,z+ VMJ+ ..., ( 5 . 2 b )  

W = p-i  W, sin k,  z + W, sin k, z+ W, sin Zk, z]  

+p-a[ W, sin k,z + W, sin 2k,z+  W, sin 3k,z ]  + . . . , ( 5 . 2 ~ )  

P = cos k,  z + /3-i[& cos k,  z + pZ cos 2k, z ]  

+ p-:[[p3 cos k,  z + p4 cos 2k, z + p5 cos 3k, z ]  

+ PMo + p-'pM, + p-'PM2 + p-'P,, + - f .  > ( 5 . 2 d )  

where apart from PMo, P,, and P,,, which depend only on r and @, the coefficients 
in these expansions are functions of 7, @ and 7. The functions PMo, PMl and PMz are 
essentially pressure eigenfunctions needed to satisfy all the required conditions on 
the mean velocity field. (See DiPrima & Stuart (1975)  for a discussion of the need 
for such eigenfunctions in centrifugal instability problems.) 

It is now a straightforward procedure to substitute from ( 5 . 2 )  into ( 2 . 5 )  and 
successively equate like powers of p-i. At order p-i we find that ( U , ,  V,) satisfy the 
linear stability problem (2 .10 )  with T, = To, and Ic = k,, so that 

cue, Vo) = A ( @ )  (G, a 
where 

Here the functions { U:} and { V:} satisfy (2 .12 )  with k = k ,  and To = q,. At order P-4 
we find that terms proportional to  sin k,  z ,  cos k,  z again satisfy (2.13 a), so that (U,, V,) 
is given by (2 .13b) .  In  addition to  the fundamental modes generated at this order, 
there are first-harmonic and mean-flow correction terms produced by the nonlinear 
terms Q1, Q2 and Q3 appearing in (2 .5 ) .  After some manipulation we can show that 
( U 2 ,  V,) and (U,,, VMo) can be expressed in the forms 

(u,, v,) = A'(@) (02 (7 ,7 ) ,  Q v , ~ ) ) ,  (UMO, ~im) = A ( @ )  (A'(@) OM,, A ( @ )  VMo), 
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where (02, E) satisfy 

a u - v =-O 2 = O  at 7 = O ,  
a7 

02, C+O as q+m. 

2 -  2 

The mean-flow correction term VMo satisfies 

vM0 = o for 7 = 0,m. J 

The forcing term on the right-hand side of the equation for VMo has the property that 

s,’” 0, dr = 0, 

so that vMo tends to zero exponentially when 7 + 00. The dependence of VMo on the 
slow variable @ induces the normal velocity component UMo = AA‘O,,. From the 
equation of continuity we have 

O M 0  = - 2-Q, JOT VMo d7, (5.5) 

which tends to a function of 7 when 7 --f co . Thus there exists a weak outer potential 
flow driven by the mean-velocity field in the Stokes layer. The outer potential flow 
decays algebraically in the normal direction and has a normal velocity that matches 
with (5 .5) .  However, the matching requires an azimuthal velocity field of order p-! 
in the Stokes layer which tends to a given function of 7 and @ when 7 + 00. This 
velocity field is an ‘eigensolution’ driven by the pressure field PMo, which is then 
determined by matching with the outer potential flow. This outer flow is determined 
by first noting that, when 7-f 00, U,, can be written as 

2n 00 

where p, = -2-;q,J [ vMOe-in7d 7 d 7 (n = f 1 ,  +3,  f5 ,... ), 
0 0  

and p, = 0 (n = 0, +2, +4, ...). 

In  order to determine the outer flow, we write 

r -a  g = -A a 
so that the radial and azimuthal variations are now on the same lengthscale. The 



Boundary-layer stability on a n  oscillating cylinder 

radial and azimuthal velocity components then expand as 

363 

where Yn = 0 for n even, whilst for n odd Yn satisfies 

i Yn+O as y+co, 

Yn+0 as )@)+co, 

Y n = i P n A 2  a t  C = O .  

The solution of (5.8) is 

The amplitude function A ( @ )  is determined as a solvability condition on the 
differential system obtained by equating fundamental terms of order p-3 after 
substituting for U ,  V ,  W and P from (5.2) into (2.5). The required condition is 

d2A 
w+,u(~-@~) A = yA3 ,  (5.10) 

where ,u is given by (2.15) with k = k, and T,  = l&. The constant y is defined by 

- Jn2' Jnm { U+P+ V+Q> dy d7 

where 

P = $; T,,[ 6 ci, + 2 vMo 61 - 3k;[$Oo 02, + o2 OO7] 

- [ 0 2  00,,, + t 4, 0 0 , ,  - 0 0 , 8 2 , ,  - 2 0 0  82,,,1 

and Q = [ ~ 0 ~ 2 , + 2 ~ 0 ~ ~ 0 , + ~ 2 ~ , + 2 ~ ~ 0 ~ + ~ ~ ~ , ~ ] .  

The amplitude equation (5.10) must be solved subject to  the condition 

A+O as )@)-+co, 

and of course reduces to  (2.14) for A 4 1.  We postpone a discussion of the solution 
of (5.10) until after an investigation of the effect of a finite-amplitude solution on the 
steady streaming of the basic flow. 

The fundamental terms of order p-i in (5.2) can be calculated when the solvability 
condition (5.10) is satisfied. The equations for the first- and second-harmonic 
functions of order p-0 can be solved directly without recourse to solvability condition. 
The radial mean-flow function U,, is determined by (5 .5) ,  so that at order p-2 i t  
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remains for us to discuss the azimuthal mean-flow function V,,. This function satisfies 
the equation 

which is to  be solved subject to 

V M , = O  for 7 ~ 0 , ~ .  (5.12) 

However, the form of the nonlinear terms in (5.11) means that VMl has a steady term 
in its Fourier-series expansion. If the steady part of V,, is denoted by V,,, then the 
appropriate boundary conditions for V,,, are 

(5.13) V,,, = O  a t  7 = 0 ,  -VM,,+O as ~ + c o .  

Thus the steady flow in the boundary layer induced by the finite-amplitude 
disturbance does not decay to  zero when 7 + co . I n  fact we see from (5.11) and (5.12) 
that  when 7 --f 03 

a 
a7 

dA 
d@ 

VMl - dA--, 

where d is a constant to be calculated numerically. We found that d = -4.39, so that 
the azimuthal velocity component of the disturbance tends to -4.39U0P-iA dA/d@ 
when 7-+ GO. It is known (see Stuart 1966) that the steady part of the azimuthal 
velocity component of the basic flow tends to 3.2-fGc Uo/3-%D when 7-f co with 
8-471 = $bpi. We see then that the steady streaming of the two-dimensional flow is 
modified by the instability. Moreover, it follows that in the outer steady-streaming 
boundary layer the steady part of the basic flow and the instability cannot be found 
independently. This outer layer is of thickness ap-:, and if we take the variable 
6 = [ ( r -a ) /a]@ we look for an outer steady flow given to first order by 

which must be solved subject to  

(5.14) 

1 (5.15) 

If we set A = 0 above we obtain the equations governing the attachment of a steady- 
streaming boundary layer within a p-i neighbourhood of 0 = $71. In  that case (5.14) 
is solved subject to 

Y, = 0 a t  @ = 0, (5.16) 

and the symmetry of (5.10) about @ = 0 means that (5.16) can still be applied since 
either A or dA/d@ = 0 a t  @ = 0. We note that for large @ the condition (5.15) reduces 
to Yt+T,,3@/2f as [ + O ,  so that, assuming that the boundary layer remains 
attached for finite values of @, the extra term proportional to AdA/d@ in (5.15) 
merely produces an origin shift in the large-@ asymptotic solution of (5.14). The linear 
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FIGURE 6. The numerically calculated bifurcating solution of (5.10). 

eigenfunctions A,(@)  for n + 0 all have intervals where A,(@) A:(@) is positive, so 
that the possibility exists that in the nonlinear regime the slip velocity in (5.15) might 
change sign a t  some value of @. If the magnitude of the inviscid slip velocity is 
sufficiently large where this occurs then the attached-flow strategy fails and the 
steady-streaming boundary layer will detach prematurely from the cylinder. This 
possibility does not occur for more general flows where the point of attachment of 
the steady-streaming layer and the most unstable position do not coincide. In  this 
case the steady streaming driven by the instability is weak compared with that of 
the basic flow. 

We return now to discuss the solution of (5.10), which of course depends crucially 
on the sign of y.  Our calculations gave the totally unexpected result that 

= -0.087. 

This result is surprising, because, as we shall see below, it implies that the finite- 
amplitude solutions of (5.10) bifurcate subcritically from the eigenvalues of the linear 
problem. I n  the work of Seminara & Hall (1976) the corresponding constant was found 
to be positive, so that his sign difference caused some concern. The calculations used 
to compute y were repeated using an independent program, and confirmed the result 
of the previous calculation. However, a completely independent calculation of y 
would be desirable. The sign of y could also be checked by a fully numerical 
investigation of the nonlinear problem, but the complicated nature of the basic flow 
makes such a calculation formidable. 

On the assumption that y is negative we then show from (5.10) that for 
l!F-T,,l 4 1 

A2 - - Y -  (T- T,,) A;(@)  (5.17) 
LL 

--m 
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so that since ,u > 0 finite-amplitude solutions of (5.10) exist locally near = T,, only 
for T < TI,. Thus, as stated above, the solutions of (5.10) bifurcate subcritically from 
the eigenvalues of the linear problem. The subcritical nature of the bifurcation was 
confirmed by integrating (5.10) numerically using a shooting procedure. The results 
are shown in figure 6, where we have plotted the amplitude of the first mode evaluated 
a t  @ = 0 as a function of T. I n  some hydrodynamic stability problems (see e.g. 
DiPrima & Sjbrand 1983) higher-order nonlinear effects can reverse this result and 
produce supercritical equilibrium solutions, though, without doing a higher-order 
calculation, we do not know that this happens in our problem. 

It is well-known that a subcritical solution will be unstable, so that by allowing 
A to be a function of a slow time variable we can show that (5.17) is unstable. Thus 
in order to find the flow to which the disturbed flow evolves i t  is necessary to solve 
the fully nonlinear problem numerically; such a calculation has not yet been 
attempted. 

6. Conclusions 
We have shown that oscillatory viscous flows interacting with rigid boundaries of 

convex curvature can become unstable to Taylor-Gortler vortices. I n  particular, the 
flow induced by the transverse oscillations of a circular cylinder is linearly unstable 
to Taylor-Gortler vortices localized where the slip velocity of the potential flow 
outside the boundary layer on the cylinder is a maximum. The results of our theory 
are in excellent agreement with Honji’s (1981) observations over a wide range of 
values of the frequency parameter @, even though our results are formally valid only 
in the limit p-. co. 

For an elliptical cylinder there are as yet no experimental results available. It would 
be interesting to see whether the cusp-shaped curve for 01 = 0 in figure 4 could be found 
experimentally. There is no reason to suppose that the sensitive dependence of the 
critical Taylor number on the eccentricity and the angle of attack predicted in $4  
could not be reproduced experimentally. 

The results of our nonlinear calculations are unexpected, because of the prediction 
of the subcritical nature of the instability. It is almost invariably the case in the 
Taylor problem that the bifurcation to a Taylor-vortex flow is supercritical, but 
DiPrima & Sjbrand (1983) have found subcritical bifurcation when considering the 
flow between counter-rotating cylinders. I n  fact, if we do not restrict the wavenumber 
to be that corresponding to the minimum on the neutral curve, there will always be 
a finite band of wavenumbers where the Landau coefficient y is negative in the steady 
Taylor problem. This band of wavenumbers lies to the left of the point on the neutral 
curve where the wavenumbers on the left- and right-hand branches are in the ratio 
1 : 2. In  the present problem the constant y becomes singular where the neutral values 
of the wavenumbers are k = 0.34 and 2k. In  fact, near k the constant y behaves like 
- l /(k- k), so that to the left of k there is a finite range of values of for which y 
is positive. However, calculations show that the range of wavenumbers is only of 
length O(10-l) and y then becomes positive again. 

If the instability is indeed subcritical then we presume that close to the critical 
Taylor number sufficiently large perturbations to the basic state will grow. It is 
possible that higher-order nonlinear effects eventually cause these perturbations to 
equilibrate, and that this is why Honji observes some kind of steady state with 
Taylor-Gortler cells. I n  fact, even if nonlinear effects are not stabilizing a t  higher 



Boundary-layer stability on a n  oscillating cylinder 367 

order, then, because of the localized nature of the instability with the flow unstable 
in a /3-i neighbourhood of the most susceptible positions of the boundary layer, we 
might expect that  some periodicity along the cylinder would be observed. Indeed, 
it is known in parallel or nearly parallel-flow stability theory that Tollmien-Schlichting 
waves can be observed even though they are subcritically unstable. I n  the present 
problem, the subcritical nature of the bifurcation could be investigated by solving 
the full stability equations by Fourier-analysing in the z-direction and solving a large 
system of coupled nonlinear partial differential equations, but such a computation 
would be nontrivial. 

Finally, we point out that perhaps Honji’s results might in fact suggest that the 
instability does not develop supercritically in the manner usually found in the Taylor 
problem. We refer to the fact that Honji gave two experimentally determined curves: 
one representing the onset of ‘streaked flow’, and it higher curve above which the 
streak could be observed because the flow was then separated and turbulent. We saw 
in $ 5  that some finite-amplitude solutions of (5.10) would cause the steady-streaming 
boundary layer to separate prematurely. Thus our nonlinear calculations do in fact 
suggest an increasingly likely breakdown in the basic flow structure when the Taylor 
number is increased. Alternatively the separated flow observed by Honji could be 
simply the unsteady two-dimensionaI separation of the Stokes layer on the cyIinder. 
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with the range of validity of the expansion procedures of Davidson & Riley for the 
elliptic-cylinder problem. The research reported in this paper was completed while the 
author was a t  ICASE, NASA Langley Research Center, and was supported by NASA 
under contract no. NASl-17070. 
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